ESTIMATING FINANCE NEEDS: THE LOW-CARBON TRANSITION OF THE MEXICAN POWER SECTOR

Markus Hagemann and Anna Nilsson

10 July 2024

- MEXICO'S POWER SECTOR
 - Status quo
 - Net-zero scenarios
- CLIMACT FINANCE NEEDS
 - Compensation payments for early retirement of fossil gas plants
 - Renewable energy uptake
 - Just social transition
- CONCLUSIONS

- 41% of installed capacity
- Increased in recent years (3.3% increase in 2023 compared to 2022)
- High reliance on imported fossil gas from the US
 - Gas crisis
 - Energy security

Source: EMBER

WHILE RE IS SLOWING DOWN IN MEXICO ...

- Renewables investments/ new capacity decreased significantly in recent years
- Investments in renewables significantly impacted by lacking policy framework after discontinuation of auction scheme
- Given these uncertainties WACC for renewables has increased in Mexico

Year	WACC100 MWSolar PV Project	WACC 250 MWGas Fired Project
2019	9.0% - 10.0%	9.5% - 10.0%
2021	9.5% - 10.0%	9.5% - 10.0%
2022	11.0% - 11.0%	9.0% - 10.0%

Countries have seen significant growth in renewables

- Especially solar driven by market forces
- Wind facing more challenges (siting, permitting)
- Build-out in some countries already on a net zero pathway
- Aligned (planned) global manufacturing capacity growth
 - PV modules and cells capacity already today at 2030 level required under IEA NZE scenario (globally)
 - Other technologies (e.g. batteries) also picking up significantly under Chinese, US and EU efforts

REQUIREMENTS TO STAY IN LINE WITH THE PARIS AGREEMENT

- Generally high agreement on the need for a phase out of coal in the short- to mid-term
- Renewables deployment need to accelerate rapidly already in the near term
- Higher level of disagreement on the future of fossil gas
 - Political vs technical feasibility
 - Increase political will through the aspects such as economic competitiveness and energy security

CURRENT PIPELINE

- The coal fleet is relatively old and there is currently no new planned capacity
- The majority of new planned capacity is fossil gas
 Fossil gas is the main challenge to decarbonize the power sector, but there is a lack of discourse
- Also has the potential to reduce the cost of electricity while improving energy security, as we will demonstrate in our presentation

AGE DISTRIBUTION OF THE CURRENT OPERATING COAL AND FOSSIL GAS POWER GENERATION FLEETS IN MEXICO

KEY AREAS OF CLIMATE MITIGATION FINANCE FOR THE POWER SECTOR

Infrastructure: Clean build-up

New renewable energy New power storage solutions New and upgraded grid connections Energy efficiency measures System management / balancing New manufacturing for components

Just social transition

Support to retiring workforce Reskilling / training programmes Economic diversification from coal Relocation support Community investments Education and skilling new workforce

Infrastructure: Fossil phase-out

Early retirement of fossil fuel based power plants Restricted operation of fossil fuel based power plants Reduced fossil fuel production Decommissioning of plants / mines Repurposing or remediation of sites

Institutional capacity

Sector planning and delivery Project permitting / licensing Monitoring progress New policy development Public engagement and awareness

- Order-of-magnitude estimates
- Finance instruments and types are also important aspects
 - Need for more grants and concessional finance

INFRASTRUCTURE: FOSSIL FUEL PHASE OUT

ESTIMATING CLIMATE FINANCE NEEDS FOR FOSSIL FUEL PHASE OUT

Infrastructure: Clean build-up

New renewable energy New power storage solutions New and upgraded grid connections

Just social transition

Support to retiring workforce Reskilling / training programmes

Infrastructure: Fossil phase-out

Early retirement of fossil fuel based power plants Restricted operation of fossil fuel based power plants Institutional capacity

- Following a Paris Agreement compatible pathway will require:
 - No new build-out of fossil gas
 - The early retirement of 82 fossil gas plants
 - Restricted operation of some fossil gas plants
 - This could impact the profitability of affected fossil gas plants
- How much financial compensation to fossil gas plants is justified for early retirement?
 - Compensation for early retirement can only be justified if the plant has not yet broken even
 - The aim is not for the fossil fuel plant to generate additional profit
 - Three methods applied

EARLY RETIREMENT: KEY TAKE-AWAYS

- Compensation needs range from negative values to around 9 bln USD
 - Highly dependent on the approach used
- Many fossil gas plants have run at a constant loss and rely on energy subsidies
- Replacing fossil gas capacity with renewables could improve the economic situation of power plant owners
 - Highly sensitive to the perceived risk of making investments in Mexico and the future cost of fossil gas

THREE METHODS TO ESTIMATE COMPENSATION

PLANT-BASED CAPITAL RECOVERY

- In total 37 plants (7.9 GW) that would break-even before the early retirement year
- 9 plants (1.6 GW) would be in need of economic compensation
- Remaining 39 plants (1.7 GW) run at a constant loss >> Compensation payment is estimated assuming break-even at end of lifetime
- Heavily reliant on assumptions

Figure: Operating period before fossil gas fired power plants in Mexico break-even and years in need of compensation for plants over 50 MW (Method 1)

SIMPLIFIED CAPITAL RECOVERY

- All plants would need compensation by definition
- Does not reflect the reality
- Significantly inflates the compensation estimates

Figure: Operating period before fossil gas fired power plants in Mexico break-even and years in need of compensation for plants over 50 MW (Method 2)

COMPARING ELECTRICITY GENERATION COSTS

- Renewables are currently more expensive based on current interest rate
- LRMC of fossil gas increases over time while cost of renewables is decreasing following learning curves and economies of scale
- With lower cost financing, solar is already cheaper than fossil gas, and wind would reach that point before mid-2030s

Estimating finance needs – Mexican power sector

INFRASTRUCTURE: CLEAN BUILD-UP

ESTIMATING CLIMATE FINANCE NEEDS FOR RENEWABLE ENERGY BUILD OUT

- Following a Paris Agreement compatible pathway significant investment in RE are needed
- Yearly capacity build out needs to increase for 2024 2030
 - 7 times per year for solar
 - 28 times per year for wind compared to 2020 2023

- The buildout of RE is also the cheapest option in Mexico:
 - LCOE of wind and solar mix already lower than NEW fossil gas, EVEN with current financing
 - → RE buildout makes more economic sense than expansion of fossil gas EVEN under low price gas scenarios

LCOE new fossil gas
LCOE wind and solar at WACC 9.4%
LCOE wind and solar at WACC 4.4%
LRMC existing fossil gas

LEVERAGING CLIMATE FINANCE FOR RENEWABLE ENERGY BUILD UP

- Solid enabling framework to reduce risk and provide investor certaintly
 - Reliable, long-term renewables remuneration regimes
 - Long-term renewables targets
- >> Targeted international support could be to help overcome barriers
 - Low cost (concessional) financing or even just commercial financing
 - Financial instruments such a guarantee funds to lower investor risks
 - Technical and financial support to overcome permitting, siting and planning risk
- $\rangle \!\!\!> \rightarrow$ Renewables is an area that can leverage significant gains with limited financial support

- >> RE could help reduce electricity generation costs and lower current energy subsidies
 - Current subsidy levels at 9.9 c/kWh could be reduced by between 0.4 c/kWh (current WACC) and 2.3 c/kWh (low-cost financing)
 - Savings could amount to between 33.8 mln USD and 129.3 mln USD per year

ESTIMATING FINANCE NEEDS FOR GRID EXPANSION

- Grid buildout planning/ modelling in line with a net zero scenario requires national planning/modelling which does not exist in Mexico yet
- Major areas of focus should be the buildout of transmission grid, distribution grid and digitalisation (e.g. demand management)
- First estimates based on a meta study of experience in the US suggest an order of magnitude from 20 bln USD to almost 160 bln USD to connect RE capacity coming online

JUST SOCIAL TRANSITION

JUST SOCIAL TRANSITION

- Difficult to quantify without consultation Local context is key
 - Combination of bottom-up inputs and top-down coordination and finance most successful internationally
- Key areas include brown job transition, regional development (coal), vulnerabilities caused by temporarily increased electricity costs, vulnerabilities due to land use impacts on selected groups
 - Brown job transition and regional development are heavily interlinked
- Various measures/ funds could be considered in Mexico:
 - Regional transition fund(s) to help regions transition
 - Social transition funds to support vulnerable groups
 - Workers compensation funds to help workers transition
 - National/ regional just transition plans to form the basis for structured funding

- Identifying support needs is a political process that requires deep engagement with affected stakeholders in the local context
- A robust and credible evidence base is needed to support this process, also to attract international finance
 - Provide order-of-magnitude figures, clarify important trade-offs, highlight potential pitfalls (such as windfall profits) and provide a starting point for investors and other financing institutions to engage with a country
- Any quantification highly depends on the underlying assumptions made, policy and prioritisation decisions as well as the availability of often proprietary data
 - A focus on short to mid-term support needs is advisable
- Not all areas are as easily quantified Some (e.g., just transition) require extensive stakeholder processes, which should not lead to a prioritisations of funds
- Investment and finance needs vary significantly across these different dimensions in scale and type and tailored approaches should be considered in all areas