OVERVIEW

Air Pollution Impact Model for Electricity Supply **AIRPOLIM-ES**

Tessa Schiefer Harry Fearnehough Reena Skribbe

September 2023

Before we start...

Who we are and project context

NewClimate Institute:

Germany-based research institute/ think tank active in international climate policy

Ambition to Action:

3-year project funded under the German International Climate Initiative (IKI) implemented by NewClimate Institute and ECN, part of TNO

Objectives:

Support and accelerate further development and implementation of NDCs in four partner countries

MEASURING THE HEALTHS IMPACTS OF AIR POLLUTION

Methodology and data inputs

Introduction

From air pollutants to health effects

Sources of air pollutants

Energy and air pollution

Non-energy

Fuel supply 🛢

Extraction, storage, transport, and transformation of fossil fuels

Cooking, heating, and lighting

PM_{2.5} NO_x SO₂

Power 🛦

Combustion of coal, oil, gas, bioenergy, and waste

Industry

Fuel combustion; process emissions

Transport 🖚

Exhaust fumes; brake, tyre and road wear; and fuel evaporation

Impact Pathway Approach

Methodological framework

Impact Pathway Approach

Methodological framework

ntake Fraction =
$$\frac{\sum_{i}^{N} P_{i} \times \Delta C_{i} \times BR}{Q}$$

i = location
P_i = population at this location
 ΔC_{i} = change in the concentration of PM_{2.5}
caused by emissions from specific source
BR = population average breathing rate
Q = total emission rate of the pollutant

Zhou et al. 2006 coefficients

Intake fraction coefficients for population residing within bands of 0–100 km, 100–500 km, 500–1,000 km, and 1,000–3,300 km from emission source \rightarrow interpretation of coefficients: if population increases by 1 million, the intake fraction increases by x

(Zhou et al. methodology: Step 1: Estimation of intake fractions through dispersion modelling for 29 Chinese coal power plants and population mapping; Step 2: Regression with estimated intake fraction as dependent and population within distance bands as independent variable)

Widely used approach, e.g. in the following studies: IMF (2014) Getting Energy Prices Right, Greenpeace International (2014) South Africa Study, Cropper et al. (2012) The Health Effects of Coal Electricity Generation in India

Key data inputs required in the model

Plant data

Lifetime Installed capacity Capacity factor Heat rate (efficiency) Emissions control Location

Population mapping

Gridded population data GIS Mapping

Population data

Country-specific mortality rates Share of population per age category Life expectancy at specific age Population growth estimates

Input data

Ambition to Action

Inside the Excel tool

Source: Global Coal Plant Tracker (2020), WorldPop, GIS mapping results Count of plants / units 10 Enter "1" if power plant should be included in analysis, "0" if not VorldPopYear 2020 Enter "Average Inter "Avera

Plant_List	t Plant	ID Scenario_Lis	t iclude_Switcl	h Plant_Fu	el Plant_Typ	pe Plant_Country	y Plant_Status				Plant_StartDate		Plant_Lifetime	Plant_E	missionContro	I Plant_PM2.5	5 Plant_NO>	Plant_SO2	Plant_CO2	Plant_Lat	Plant_Long	Plant_Eff
Plant	Plant ID	Scenario	Include in analysis	Fuel	Туре	Country	Status	Capacity		Actual end of operations	Start of	End of operations	Remaining lifetime	Heat rate	Emissions control	PM2.5 emissions factor	NOx emissions factor	SO2 emissions factor	CO2 emissions factor	Latitude	Longitude	Plant efficiency
text									date	date	date	date	years	Btu/KWh		t/GWh-th	t/GWh-th	t/GWh-th	t/GWh-th	degrees (°)	degrees (*)	%
Adaro Aluminum Smelter power station	IDN1	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	8605	Average	default	default	default	default	2.5280	117.8580	40%
Adaro East Kalimantan power station Unit 1	IDN2	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	9466	Average	default	default	default	default	0.1000	116.4000	36%
Adaro East Kalimantan power station Unit 2	IDN3	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	9466	Average	default	default	default	default	0.1000	116.4000	36%
Adipala power station Unit 1	IDN4	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	8409	Average	default	default	default	default	- 7.6859	109.1376	41%
Amamapare Port power station Unit 1	IDN5	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	12183	Average	default	default	default	default	- 4.8278	136.8391	28%
Amamapare Port power station Unit 2	IDN6	SimpleMW		1 Coal	Coal	Indonesia	operating	100.00	2020	2045	2020	2045	40	12183	Average	default	default	default	default	- 4.8278	136.8391	28%

Population input

Plant data

incountry tookm try tookm yookm toookm sookm												
PlantLis	t		In-country	In-country	In-country	In-country	All countries	All countries	All countries	All countries		
			In-country	In-country	In-country	In-country						Exposed
			population	population	population	population					Population	population
			within radius	over	over							
Unit	Country	Plant_ID	100 km	100 - 500 km	500 - 1000 km	1000 - 3300	100 km	100 - 500 km	500 - 1000 km	1000 - 3300		
text			million	million	million	million					share	
Adaro Aluminum Smelter power station	Indonesia	IDN1	0.56	6.52	29.23	247.91	0.56	12.20	47.06	1,236.89	57%	163
Adaro East Kalimantan power station Unit 1	Indonesia	IDN2	0.61	14.04	59.11	210.46	0.61	14.32	67.69	1,026.04	57%	163
Adaro East Kalimantan power station Unit 2	Indonesia	IDN3	0.61	14.04	59.11	210.46	0.61	14.32	67.69	1,026.04	57%	163
Adipala power station Unit 1	Indonesia	IDN4	14.71	137.32	48.15	78.75	14.71	137.32	48.19	473.58	57%	160
Amamapare Port power station Unit 1	Indonesia	IDN5	0.68	5.16	3.15	129.76	0.68	5.16	6.05	253.75	57%	79
Amamapare Port power station Unit 2	Indonesia	IDN6	0.68	5.16	3.15	129.76	0.68	5.16	6.05	253.75	57%	79

Incountry100km try100km500km v500km1000km1000km3000km countries100km ies100km500km is500km1000km i1000km3300km

Data Sources: Plant data

Data sources: Population mapping

Data sources: Population data

AIR POLLUTION HEALTH IMPACT INDICATORS

Illustrative results

Outputs

Emissions

Annual and lifetime emissions for:

Health Impacts

Annual and lifetime premature deaths and years of life lost for:

Available on plant, scenario and country level & restricted to country population or for all affected population

- PM_{2.5}
- *NO_x*
- *SO*₂

- Lung cancer
- Chronic obstructive pulmonary disease
- Ischemic heart disease
- Stroke

Number of premature deaths

Number of years of life lost

Emissions

17

APPLICATIONS OF AIRPOLIM-ES

Published and ongoing application of AIRPOLIM-ES

Air pollution health impact assessment in Kenya

Illustrative results

* Reference case: Lamu power station: 981 MW (start: 2024), Kitui power station: 960 MW (start: 2034); Alternative case: Lamu power station: 450 MW (start: 2034); assumed lifetime of all coal-fired power plants is 30 years

OVERVIEW OF AVOIDED PREMATURE DEATHS FROM EARLY COAL PHASE-OUT

DISCUSSION

Limitations and challenges

Considerations for the accuracy and interpretation of results

ZHOU ET AL. (2006) COEFFICIENTS

Limitations: Not taking into account stack height, meteorological conditions and other location specific factors

EMISSION FACTORS

Limitations: Only provide approximate emission estimations, however plant-specific factors can be entered if available

LINEAR CONCENTRATION RESPONSE FUNCTIONS FROM GLOBAL BURDEN OF DISEASE STUDY

Limitations: Concentration response functions are assumed to be linear in a way that health effects are independent from the initial level of pollution. This is a simplified approach used in many other studies.

HEALTH IMPACT ESTIMATES FOR POPULATION OUTSIDE OF ANALYSIS COUNTRY

Limitations: Those estimates do not take into account country-specific characteristics (including population growth, mortality rates and age shares) but assume those of the country where the power plant is located.

GIS KNOWLEDGE

Estimating population exposure requires at least basic knowledge of geographic information system software

EXCEL KNOWLEDGE

Using the model requires intermediate Excel knowledge / experience

QUESTIONS / COMMENTS / FEEDBACK

Reena Skribbe r.skribbe@newclimate.org Harry Fearnehough

h.fearnehough@newclimate.org

