March 2022

CLIMTRADE

Economic impacts of climate regulation in trade

Mats Marquardt

CLIMTRADE was developed under the Ambition to Action project

The tool is an output of the Ambition to Action project, which supports NDC implementation through technical assistance and thought leadership. The second phase of the project is implemented collaboratively by NewClimate Institute and Xander van Tilburg, over a two-year period until March 2022. Project funding is provided by the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU). Ambition to Action's technical assistance aims to support the mainstreaming of climate and development goals at the sector level, through the development of evidence on social, economic and environmental benefits of mitigation actions and pathways.

www.ambitiontoaction.net

Supported by: Federal Ministry for the Environment, Nature Conservation Mildion and Nuclear Safety

based on a decision of the German Bundestag

clim trade

Detailed instructions and explanatory guidance to help use the **CLIMTRADE** model are included within the tool itself

A2A – Advancing from Mitigation Ambition to Action

2016-2019 / 2020-2022

- Project funded under German^V International Climate Initiative (IKI)
- Implemented by NewClimate Institute in cooperation with ECN/ TNO and Xander van Tilburg

Partner countries:Phase I (2016-2019):

- Argentina, Indonesia,
- Kenya, Thailand
- Phase II (2020-2022):
- Argentina, Indonesia, Kenya

CLIMTRADE

Methodology overview

Download here: CLIMTRADE

clime trade Overview: Purpose and application

Excel tool to quantify **economic impacts** resulting from carbon tariffs, e.g. CBAM

Partial equilibrium modelling based on World Bank model & Input-Output module

High level example questions:

- How does a carbon tariff applied to different commodities impact export revenues of different countries?
- How does reducing the emission intensity of a commodity (mitigation) constitute a competitive advantage for exporting countries?
- How does a carbon tariff-induced demand shock affect **domestic output and employment?**

Advantages:

- Manageable data requirements
- Transparent, accessible and adaptable
- Easy to implement
- Open source

Limitations:

- Snap shot analysis, no longitudinal modelling, no feedback effects
- No cross-product substitution / industry links
- Not a forecasting tool

Ambition

Action

to

clime trade Carbon price specific cost (CPC)

Ambition to Action

CPC (USD per kg traded) is then converted to ad-valorem terms using UNCTAD methodology

commodity and country-pair specific carbon tariff %

clime trade Partial equilibrium model (PE)

We model the introduction of a **carbon tariff** by exogenously defining a tariff increase for imported commodities.

The model solves by imposing **market clearing** (changing prices so that there is no excess supply or demand on the world market) to determine equilibrium prices and quantities imported and exported.

Please refer to <u>Francois & Hall (2009)</u> for a full derivation of **the partial-equilibrium model** on which CLIMTRADE is based.

Modelling methodology

Logic of partial equilibrium modelling of trade dynamics and input-output analysis for the estimation of domestic economic impacts

clime trade Input-output analysis (IO)

>>> We use **input-output analysis** to estimate economic impacts (GDP and employment) countries facing forgone revenue resulting from the introduction of a carbon tariff.

Ambition

to

Action

climg trade Data requirements and sources

Data requirements are **generally limited** (see table). All required input data and sources provided are open source.

CLIMTRADE has all OECD input-output tables **pre-loaded**.

Additional inputs required for the PE model are **elasticities** of substitution, import demand elasticities, and export supply elasticities. Default values, based on <u>Francois & Hall (2009)</u>, are provided.

Data	Source
Domestic production data	E.g. <u>FAOSTAT</u>
Bilateral trade flows in monetary terms	World Integrated Trade Solution
Bilateral tariff data	World Integrated Trade Solution
World prices	E.g. <u>GIEWS FPMA</u>
Commodity emission intensities	E.g. Roser & Ritchie (2021)
Transport intensities	<u>ECTA</u>
Transport distances	Mayer & Zignago (2011)
Input-Output tables	<u>OECD (2021)</u>
Salary data	E.g. <u>MTEySS (2020)</u>

Note: Where general data sources are not available, sources used in the Argentina case study (see following slides) are provided as examples.

Example results: Argentina

Analysis of selected agriculture commodities in Argentina

More info: A2A Argentina

Overview: Impacts across carbon prices

	Commodity	USD 25 per tonne of CO ₂ eq	USD 50 per tonne of CO ₂ eq	USD 75 per tonne of CO₂eq	USD 100 per tonne of CO ₂ eq	
	Soybeans (k USD)	\$ -293,185	\$ -579,895	\$ -860,329	\$ -1,063,460	
impact of	Maize (k USD)	\$ -34,533	\$ -68,350	\$ -101,478	\$ -132,097	0
on tariff	Bovine meat (k USD)	\$ -69,732	\$ -139,791	\$ -127,257	\$ -114,398	Ę
Jon tann	Wheat (k USD)	\$ -9,485	\$ -18,883	\$ -28,195	\$ -37,422	
	Milk and cream (k USD)	\$ -58	\$-116	\$ -157	\$ -233	ц
on ort	Total forgone revenue (k USD)	\$ -406,993	\$ -807,036	\$ -1,117,433	\$ -1,347,610	۵
ture						
	Total domestic impact (k USD)	\$ -916,240	\$ -1,817,961	\$ -2,467,919	\$ -2,947,261	
	Impact on total GDP (%) (2019)*	-0,2%	-0,4%	-0,6%	-0,7%	
odelled	Impact on agricultural GDP (%) (2019)**	-4,0%	-7,9%	-10,7%	-12,8%	T mC
ons.	Impact on employment (job years)	-20,247	-40,159	-55,153	-66,248	

Analysis of the a EU-wide carb on agriculture commodities o Argentina's exp oriented agricult industry.

Analysis of 5 commodities, m for 25 countries/regio

Trade diversion: Cuts in exports to the EU

Trade diversion effects from the perspective of Argentina, as a result of a EU carbon tariff based on a USD 50 per tCO2 carbon price.

Significant forgone export revenue from cuts in EU demand for soy and meat.

Increased exports to China and India only **partly offset forgone revenue**.

ARG TO DESTINATION TRADE VALUE CHANGE

Mitigation: Emission intensity reduction

Baseline and **mitigation scenario** comparison, assuming a USD 50 per tCO2 carbon price.

The mitigation scenario assumes a **30% reduction in the emissions intensity** of bovine meat production in Argentina.

Total forgone revenue in baseline scenario: **USDm 139.8** Total forgone revenue in mitigation scenario: **USDm 78.8**

Change in ARG's Bovine meat Export Flows

GDP AND EMPLOYMENT IMPACTS

Input-output analysis capturing direct, indirect, and induced **GDP** (label) and **employment** (yaxis) impacts for different **carbon prices** (x-axis).

Aggregated results for all commodities modelled.

Thank you

Mats Marquardt

m.marquardt@newclimate.org

